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With the heightened focus on computer security, IBM POWERA

server workloads are spending an increasing number of cycles
performing cryptographic functions. Active memory expansion
(AME), a technology to dynamically increase the effective
memory capacity of a system by compressing and decompressing
memory pages, is also enjoying increasing deployment in
POWER server systems. Together, cryptography and AME consume
enough central processing unit (CPU) cycles in a typical installation
to warrant adding dedicated hardware accelerators on the
processor chip to offload the compute-intensive parts of these
functions from the processor cores. IBM POWER7+i is the first
POWER server to include on-chip hardware accelerators for
symmetric (shared key) and asymmetric (public key) cryptography
and memory compression/decompression for AME. A true random
number generator (RNG) is also integrated on-chip. This paper
describes the hardware accelerator framework, including location
relative to the cores and memory, accelerator invocation, data
movement, and error handling. A description of each type of
accelerator follows, including details of supported algorithms and
the corresponding hardware data flows. Algorithms supported
include the Advanced Encryption Standard, Secure Hash Algorithm,
and Message Digest 5 algorithm as bulk cryptographic functions;
asymmetric cryptographic functions in support of RSA and elliptic
curve cryptography; and a novel dictionary-based compression
algorithm with high throughput supporting AME. A presentation
of accelerator performance is included.

Introduction
Secure computing is of growing concern to computer users.
IBM POWER server systems offer state-of-the art secure
computing technologies, allowing authentication, data
privacy and data integrity solutions to be deployed in
POWER data centers. The IBM AIX operating system (OS)
supports a number of security technologies. One such
technology is the encrypted file system (EFS), which uses
symmetric key cryptography to keep files private. Others
include network security protocols such as Internet Protocol
Security (IPSec) and secure sockets layer (SSL). These use

asymmetric cryptography algorithms such as RSA and
elliptic curve cryptography (ECC) for secret key exchange,
the secure hash algorithm (SHA) for message integrity
checking, and the Advanced Encryption Standard (AES)
symmetric key algorithm for bulk data encryption.
Since AIX version 6.1, active memory expansion (AME)

[1] has been offered as a technology for expanding the
effective memory capacity of an IBM POWER system and
has enjoyed growing deployment. AME transparently
compresses in-memory data, allowing more data to be
placed into memory, thus expanding the system memory
capacity. When an application needs to access data that is
compressed, the OS automatically decompresses the data and
makes it available to the application. CPU cycles are

�Copyright 2013 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

Digital Object Identifier: 10.1147/JRD.2013.2280090

B. BLANER ET AL. 3 : 1IBM J. RES. & DEV. VOL. 57 NO. 6 PAPER 3 NOVEMBER/DECEMBER 2013

0018-8646/13 B 2013 IBM

Draft - Preprint



expended for AME compression and decompression, in an
amount that varies with workload and the level of memory
expansion desired.
Contemporary POWER systems are shipped with

PowerVM Hypervisor [2], a firmware layer running directly
on the hardware, which virtualizes the hardware, allowing
hundreds of virtual machines to run concurrently on a
system, each isolated from the other in its own logical
partition (LPAR). In a modern, large POWER system,
hundreds of LPARs may be deploying OS security
technologies and AME simultaneously. Early in the
POWER7+ design process, it became apparent that system
performance could benefit by off-loading to hardware
accelerators some of the CPU cycles being spent on
cryptography and AME, and the decision was made to
include a complement of accelerators as a central resource on
the processor chip. While various tradeoffs apply to the use
of processor instructions to accelerate these functions [3],
tightly coupled coprocessors [4, 5], off-chip acceleration [5],
or on-chip loosely coupled accelerators, the latter approach
was selected for POWER7+ to achieve a high level of
performance and CPU off-load with low impact on chip area
and design.
The accelerators are shared among the LPARs under the

control of the hypervisor. The hypervisor manages quality of
service, i.e., maintains fairness among the LPARs using the
accelerators and translates LPAR logical real addresses to
system real addresses for use by the accelerators. The
complement of accelerators comprises three types most

essential for cryptography and AME: AES and SHA bulk
cryptography engines; asymmetric mathematical functions
(AMF) engines, performing functions in support of RSA
and ECC; and AME memory compression/decompression
engines with high throughput and good compression
efficiency. The engines are provided in sufficient quantity
to service typical workloads of the eight-core chip. A true
RNG is also provided in support of cryptography, as
described by Liberty et al. [6].
This paper is organized as follows: First, we present the

accelerator complex, including the logical location of the
complex on the chip, accelerator invocation, data movement,
and error handling. Then a section is dedicated to each of
the symmetric cryptography accelerators, AMF accelerator,
and memory compression/decompression for the AME
accelerator. Measured performance results are presented, and
then the paper concludes.

Accelerator complex
Figure 1 illustrates the accelerator complex. The POWER7+
chip integrates four different accelerators in these quantities:
three each of AES, SHA, and AMF engines, and two
eight-four-two (EFT) memory compression/decompression
engines. The accelerators are attached to the symmetric
multiprocessor (SMP) interconnect fabric, allowing access to
all of the system memory through a bus interface unit (BIU)
and DMA controller. The BIU performs transactions on
the fabric on behalf of the accelerators, and the DMA
controller performs command and data movement on their

Figure 1

Accelerator complex in POWER7+.
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behalf. The fabric is a split-transaction bus with separate
command/address/response, data-in, and data-out buses.
The primary unit of transfer on the bus is the 128-byte cache
line, although partial-line transfers are permitted. Cache lines
may be received out of order with respect to requested
order. Data buses in and out of the accelerator complex are
16-bytes wide, delivering a peak transfer rate of 37 GBps per
direction at the 2.3 GHz fabric clock frequency. Attached
on-chip to the fabric are the eight local processor cores
and caches, memory controllers, I/O controller, and
memory-coherent off-chip links to other processor chips
comprising the system.
An accelerator is invoked by the hypervisor issuing the

invoke coprocessor instruction. (The terms Bcoprocessor[
and Bengine[ will be used synonymously with Baccelerator[
in this paper.) The instruction has a 128-byte memory
operand called a coprocessor request block (CRB). The CRB
contains all the address and control information necessary
for an accelerator to execute a job, where a Bjob[ is a
fundamental unit of work of an accelerator. For example,
the AES engine encrypting scattered 512-byte blocks of
memory is a job, the AMF engine performing modular
exponentiation on one set of operands is another, and the
EFT engine decompressing a 4 KB page is another. The CRB
contains, among other things, the following information:

• Routing information to select a particular accelerator
complex and accelerator type in the system, type being
one of symmetric cryptography, asymmetric math
functions (AMFs), or compression/decompression.

• Function control field, which identifies further the
operation to be performed, for example, AES, SHA,
AMF modular exponentiation, or EFT decompress.

• An address pointing to a coprocessor status block (CSB)
and contiguous coprocessor parameter block (CPB).
The optional CPB may contain further inputs for a job,
for example, the particular cipher mode for an AES job,
the key and initialization vector (IV) for that job, or all
the operands for an AMF job. The CPB may also be
updated with certain outputs from a job, for example, the
continuation vector of an AES job, allowing a large job
to be divided into multiple smaller jobs. The CSB will
be updated with the completion status of a job, i.e.,
completion with or without error, and in the case of
completion with error, a code identifying the particular
type of error. It may contain other information such as
the number of target bytes written by a compression
operation.

• Source (input) and target (output) data descriptors
comprising an address pointing to either source data or a
gather list (a list of pointers to source data), an address
pointing to either target data or a scatter list (a list of
pointers to target data), and lengths of the source and
target data.

• Job completion controls, for example, whether a job is to
generate an interrupt upon completion.

When the invoke coprocessor instruction is executed, a
coprocessor request command is issued on the bus fabric
together with the CRB. Assuming the routing information is
correct and the BIU has a place for the CRB in its command
queues, the on-chip accelerator complex will accept the
request and queue the CRB in one of three queues, one for
each of the three accelerator types. A coprocessor request
waits in a queue until the DMA controller has sufficient
resources to process the command.
The DMA controller comprises eight channels: one per

EFT engine, one per AMF engine, and one per pair of AES
and SHA engines. Each channel services the attached
engine(s) by signaling that a new coprocessor request is
available, by prefetching and buffering CPB and source data,
and by supplying such data to the engine upon request.
The channel also buffers any output data from the engine.
The output data can comprise target data, optional CPB
updates, and completion status data, which may include an
error indication and a request to generate an interrupt.
The DMA controller data bandwidth to the engines is up to

16 bytes per bus fabric clock per direction. In order to sustain
this bandwidth and hide the latency between accelerator
invocations, the DMA controller has 12 KB of SRAM buffer
storage for cache lines heading to and from the accelerators.
Concurrently, each DMA channel can have one CRB in
progress with an accelerator for which it has fetched source
data and is buffering target data, plus one queued CRB for
which it is also prefetching CPB and source data. To service
the various DMA data access requests at maximum
throughput, the BIU has 16 independent read machines and
16 independent write machines, each capable of reading
or writing a cache line from or to the bus fabric (and
ultimately to system memory or a processor cache), allowing
32 fabric operations to be in flight concurrently. Between
these parallel machines and the DMA controller’s prefetching
capabilities, most memory access and fabric latencies may be
hidden, allowing 16-byte data transfers to be continuously
streamed to and from the accelerator complex. The BIU read
machines may return data out of order with respect to the
DMA-requested order. The DMA controller restores the
order in its cache line buffers so that data are always
presented to the engines in order.
As stated earlier, a job may terminate with an error.

Opportunities for both programming and hardware errors
occur in several places in the control and dataflow of the
accelerator complex. A great deal of attention has been paid
to detecting these errors and handling them robustly in the
accelerator complex design. Some errors may be detected by
the DMA controller, such as target data buffer overrun. Other
errors are detected by the accelerators themselves, such as
invalid operands for an AMF modular exponentiation
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operation. Still other errors, such as uncorrectable SRAM
errors, are detected by the hardware wherever SRAMs are
used. (Single bit error correct and double bit error detect error
correction codes are used on all SRAMs in the accelerator
complex.) In most cases, such errors lead to the termination
of the associated job and to the DMA controller writing an
error completion status to the CSB. Job processing then
continues as normal. Hypervisor intervention is required in
only a few rare cases, such as an uncorrectable error on
the CSB address itself, which leaves the DMA controller
with no place to write an error code.
A job may optionally generate an interrupt upon

completion, obviating the need to poll for completion status.
The CRB contains a control bit to indicate whether an
interrupt is to be generated. If it is, the DMA controller
signals the interrupt request to a local interrupt controller
in the BIU, which in turn forwards the request on the bus
fabric to the chip interrupt controller. Up to 16 interrupts may
be in flight, allowing for overlap of software interrupt
handling with running new jobs that also generate interrupts.
The true RNG is attached to the BIU and is accessed by

an MMIO (memory-mapped input/output) load instruction
with an address mapped to the accelerator complex address
space. The invoke coprocessor instruction and DMA
controller are not used to access the RNG.

Symmetric cryptography engines
The symmetric cryptography engines support a range of
cryptographic algorithms that can be applied to bulk data.
The AES engine implements several modes for several key
sizes of the AES algorithm for use in encryption and

authentication. Because it processes bulk data and is tightly
coupled to the AES engine to support the combination mode
operations (discussed later), the SHA engine is described
here as part of the symmetric cryptography engine complex.
The SHA engine implements the MD5 algorithm (a precursor
to SHA), as well as the SHA-1 and SHA-2 algorithms for
hashing and the hashed message authentication code
(HMAC) based on the SHA-1 and SHA-2 hash algorithms
for authentication. Table 1 summarizes the supported bulk
cryptography algorithms.

Symmetric operations
Symmetric key cipher algorithms, also known as shared key
algorithms, use the same key for encryption and decryption
of a message. The encryption of a single block of data is
described by C ¼ EðK;PÞ, where C (ciphertext) is the result
of encrypting the block P (plaintext) under the key, K.
The plaintext can be restored by a decryption operation ðDÞ
described by P ¼ DðK;CÞ. The AES specification [7]
defines the algorithm for three key sizes of 128 bits, 192 bits,
and 256 bits, all using a single block size of 128 bits.
The AES engine implements the AES algorithm for all

three key sizes and for six modes of operation, all based
on the single block operation just described. The ECB
(electronic code book) mode applies the single block
computation independently to each block of plaintext to
produce the corresponding ciphertext. Using subscripts to
denote successive blocks of plaintext and ciphertext, ECB
mode can be described as Ci ¼ EðK;PiÞ. The CBC (cipher
block chaining) mode takes the ciphertext result of one block
and exclusive-ORs it with the next plaintext block before

Table 1 Supported bulk cryptographic algorithms.
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applying the encryption operation. This can be described as
Ci ¼ EðK;Pi XOR Ci�1Þ. The CTR (counter) mode encrypts
the value of a counter that increments for each block,
then exclusive-ORs that result with the plaintext, described as
Ci ¼ EðK;CTRiÞ XOR Pi.
The CCM (counter with CBC-MAC) mode combines CTR

mode for encryption with CBC mode for authentication of
a single data stream. Such combined modes sometimes
require that some data be included in the authentication
operation, but not in the encryption operation. Such
additional authentication data (AAD), if more than one
block, constitutes a second data stream that must be
processed using an auxiliary operation supported by the AES
engine, called CCA. The partial authentication tag (PAT)
value computed over that AAD can then be used as an input
to the CCM operation when encrypting and authenticating
the plaintext itself.
The fifth AES mode is GCM (Galois counter mode), which

also provides encryption plus authentication. In this case,
the authentication operation uses Galois field (finite field)
multiplication, while encryption is done using CTR mode. In
a manner similar to CCM mode, AAD is processed using
an auxiliary operation called GCA, if necessary, and the
result of that operation is used by the GCM operation to
complete the authentication part of the operation. In addition,
when only authentication is required, a GMAC operation is
available to compute a complete Galois field MAC over
the data stream.

Finally, the AES XCBC-MAC-96 (XMAC) mode, used
for authentication, computes a message authentication code
(MAC) over a data stream. The MAC is essentially the final
block of ciphertext produced by an AES-CBC operation
applied to the message, except that several keys derived from
the input key are used in the computation, and special
processing is done on the final block of data that depends
on whether it is a partial or complete block.
The AES algorithm applied to one block of data applies a

sequence of substitutions and permutations to the input data,
while combining that data with key schedule data derived
from the original key. For a given key size, the computation
proceeds in a number of Brounds[, where each round of
computation involves a sequence of four steps named
shiftrows, subbytes, mixcolumn and roundkey. Briefly, these
permute bytes within the block, substitute each byte with
another from a table, apply a linear transformation, and
exclusive-OR the key schedule value, respectively. The AES
engine executes the shiftrows and subbytes steps in the
first cycle, and the mixcolumn and roundkey steps in the
second cycle for each round.
Figure 2(a) schematically shows the 128-bit wide

dataflow for the AES block computation. For an ECB mode
encryption, the first block of plaintext comes into the state
register from the Data-in input bus. The state register
value then undergoes the shiftrows and subbytes
transformations in the first cycle of round 1, and that result
is placed in the stage register. The stage register value then

Figure 2

Bulk cryptography dataflows.
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undergoes the mixcolumns and roundkey transformations in
the second cycle of round 1, and that result is placed back
in the state register. The roundkey step is implemented by the
exclusive-OR function shown at the top-left of the figure,
using a particular value from the key schedule that is
generated in separate logic from the encryption key. This
two-cycle sequence is repeated for each round of the
computationV10 rounds for AES 128, 12 rounds for
AES 192, and 14 rounds for AES 256. At the end of the
required number of rounds, the state register contains the
ciphertext block corresponding to the plaintext block, and so
it is put out on the Data-out bus. AES decryption requires
a slightly different dataflow but uses the same overall
structure.
In the case of ECB mode, the state register gets each

successive block of plaintext from the Data-in bus, and that
block is processed as just described to produce each
successive block of ciphertext. In the case of CBC mode,
the state register is first initialized with an Binitialization
vector,[ which is then exclusive-ORed with the first block of
plaintext before it is processed. The ciphertext computed
from that first block is put out on the Data-out bus and is
exclusive-ORed with the next block of plaintext, as shown at
the top-center of the figure, and placed in the state register.
That block is then processed as just described. For CTR
mode, the state register gets its value from the Counter
register for each block of data processed. The counter value
is encrypted as described above, and then that value is
exclusive-ORed with the next plaintext block to produce
the next ciphertext block.
The other AES modes require additional dataflow elements

and introduce corresponding control complexity in the
engine design to support the operation sequences defined for
those modes. Similarly, the decryption operation for some
modes requires a slightly different dataflow than the
encryption operation. However, the basic dataflow shown
in Figure 2(a) is used in all cases for the encryption of each
individual block of data.

Hashing operations
A cryptographic hash operation can be used to check
the integrity of a data stream, and as part of an
authentication operation. A hashing operation uses a one-way
function to map an arbitrary sized message to a fixed size
digest. The SHA engine implements the Secure Hash
Algorithm (SHA) version 1 [8], which generates a
160-bit digest, and version 2 [9], for both the 256-bit and
512-bit digests. These are also known as the SHA-1,
SHA-256 and SHA-512 operations, respectively. It also
implements the message digest 5 (MD5) algorithm [10],
which generates a 128-bit digest. In addition, the SHA
engine implements the hash-based message authentication
code (HMAC) operation [11] associated with each of
the three supported SHA operations, referred to as the

SHA-1 HMAC, SHA-256 HMAC, and SHA-512
HMAC operations.
Figure 2(b) shows the dataflow for the hashing function.

The four hash functions have a similar structure for this
computation but use different word sizes, numbers of
words, and mixing functions. The word size is 64 bits for
SHA-512 and 32 bits for all others. The number of words
in the dataflow corresponds to the size of the digest
being computed, and so it is four words for MD5
ð4� 32 bits ¼ 128 bit digestÞ, five words for SHA-1,
and eight words for the SHA-2 algorithms.
At the beginning of a hashing operation, the hash word

registers, 0 through 7, are initialized with constant values
specific to the particular algorithm. That value is also
copied into the partial result word registers, a through h.
Each round of computation takes two cycles. In the first
cycle, the mixing functions corresponding to the particular
algorithm, including logical operations and rotates, are
applied to the words in the partial registers. These mixing
functions and the separate function used to generate the
message schedule from the current message block are
described in the specification for each algorithm. The output
words of the mixing functions are combined with a word
from the message schedule using word addition with no
carry-out, and those results are latched in the stage register.
On the second cycle of each round, additional word-wide
adders are used to compute the values that update the partial
registers. This two-cycle round of computation is then
repeated for some number of rounds, in which the current
partial value and the next word from the message schedule
provide the inputs. At the end of 64 rounds for MD5 and
SHA-256, or 80 rounds for SHA-1 and SHA-512, the
partial words are added to the corresponding hash register
value and are stored in the hash registers. This process is then
repeated for each block of the message, including a final,
appropriately padded input message block. The final value
in the hash registers after all blocks of the message have
been processed constitutes the message digest, which is put
out on the Data-out bus.
The HMAC operations use the same hashing computations

just described, but incorporate a key and some special
processing at the beginning and end of the operation. The key
is combined with a constant to generate a first block of data
that is prepended to the message. The result is hashed to
produce an initial digest. The key is then combined with a
second constant to generate a block of data that is prepended
to the initial digest. The result is hashed to produce the
final digest, which constitutes the MAC.

Authentication-encryption operations
In addition to operations that implicitly provide both
authentication and encryption, such as the CCM and GCM
modes of AES, some protocols use a combination of a
standalone authentication operation with a standalone
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encryption operation, such as SHA HMAC with AES-CBC.
Serial execution of these two operations on a given message
can achieve the desired combination of authentication and
encryption. However, provision of a single command to
achieve that same result reduces the memory bandwidth
requirements, reduces the latency of the compound operation,
and increases the available encryption and authentication
throughput of the bulk cryptography engines.
The combinations of authentication and encryption modes

supported in the accelerator complex are any SHA-1 or
SHA-2 HMAC with any key length AES CBC or AES
CTR mode. For any such combination, all three commonly
used methods to compose the authentication and
encryption operations are supported. These are the
encrypt-then-authenticate (E-then-A) method, used by IPSec;
the authenticate-then-encrypt (A-then-E) method, used by
SSL; and the encrypt-and-authenticate (E-and-A) method,
used by SSH. The corresponding authentication and
decryption modes are also available. Support for additional
authentication data is included in these combined modes
as well.
The authentication-encryption combination operations are

implemented using the AES and SHA engine pair attached to
a particular DMA channel. The data buffering in those
engines that is normally used for input and output data
between the engine and the DMA channel is shared with that
function to also provide data buffering between the engines.
For example, the E-then-A method is implemented by
streaming the plaintext data into the AES engine, then
sending the resulting ciphertext both back to the DMA
channel and to the SHA engine. The SHA engine computes
the HMAC over the ciphertext stream and supplies the result
to the DMA channel after all the ciphertext has been
transferred.

Asymmetric math function accelerator
The AMF accelerator has several functions to support two
common cryptographic algorithms used for public key
cryptography. The first is RSA, an algorithm that is built on
modular arithmetic operations over large numbers and whose
security is based on the difficulty of factoring these large
numbers. The AMF accelerator provides several functions for
modular arithmetic including modular exponentiation,
R ¼ AB mod N , to support the RSA algorithm for operand
sizes of 512, 1024, 2048, and 4096 bits. Another popular
public key algorithm that is supported is ECC where the
key operations are based on arithmetic over elliptic curves
and whose security is based on the difficulty of solving the
discrete logarithm problem in this context. The AMF
accelerator provides functions to do point multiplication on
an elliptic curve over a prime field ½ðXr;YrÞ ¼ ðXp;YpÞ�K�
using 192, 224, 256, 384, and 521 bit numbers or over a
binary field ð½XrðxÞ;YrðxÞ� ¼ ½XpðxÞ;YpðxÞ��KÞ using 163,
233, 283, 409, and 571 bit numbers.

RSA encryption and decryption operations
The RSA algorithm uses a pair of keys, one for encryption,
the other for decryption. Let n be a large number chosen
as the product of two prime numbers p and q. The value n
is the modulus and all arithmetic is done modulo n. The
encryption (public) key, denoted by the ordered pair ðe; nÞ,
is known by all, and is used to encrypt the message m
(plaintext) using

c ¼ me mod n:

Corresponding to this public key, a private key (which is
always kept secret) is chosen using the equation

ðe � dÞ ¼ 1 mod ðp� 1Þðq� 1Þ½ �:

With this relation, the decryption (private) key, ðd; nÞ, can
decrypt a message using

m ¼ cd mod n:

The security of the RSA algorithm relies on the difficulty of
factoring n into the component primes p and q. These two
factors must also be kept secret, since if either factor is
known then the private exponent d can be determined
from the public key and thus the cryptosystem will be
compromised.
Since modern applications require the use of key lengths

of 1024 bits and larger for secure operation, these
calculations can take a considerable amount of processing
time. The AMF accelerator provides a modular
exponentiation function to offload the processor. For the
function

R ¼ AB mod N ;

the processor provides the operand A, the exponent B,
and the modulus N . The accelerator will return the
result, R. This function can be used with either the public
or private key to perform the encryption or decryption
operation.
A second RSA function, modular exponentiation using the

Chinese remainder theorem (mexpCRT), is also supported.
It can be used by the holder of the private key to decrypt the
encoded message. The basic premise of the mexpCRT is
that the private key operation can be split into two
approximately half-size modular exponentiations. The two
results can be calculated and combined more quickly than the
original larger modular exponentiation.
In addition, the AMF accelerator provides a modular

multiplicative inverse function (Minv):

R ¼ A�1 mod N :

The accelerator computes the result, R, using the extended
Euclidean algorithm.
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ECC encryption and decryption operations
ECC uses operations on points on elliptic curves defined over
prime or binary fields to define encryption and decryption
operations, as well as related functions, such as key exchange
and digital signing. Elliptic curves over a prime field are
defined as points on the graph of the equation

y2 ¼ x3 þ axþ b;

where a and b are from the underlying field. Given two
points P and Q on the elliptic curve, the point P þ Q
(point addition) results in another point on the elliptic curve.
Similarly, given a point P, the point multiplication operation,
kP, is defined as P added to itself k times using point
addition, where k is an integer. For binary fields, the
definition is slightly more general on the underlying curves.
The AMF accelerator provides support for the five prime
field pseudo-random curves and the five binary field
pseudo-random fields recommended by NIST [12].
ECC is becoming increasingly popular in certain

applications, in particular those that are deployed on
low-powered, end-user devices. The strength of these
cryptosystems relies on the difficulty of the discrete
logarithm problem, i.e., given a point B, known to be kA for
some point A, find k, the discrete logarithm of B. The
discrete logarithm problem over elliptic curves is conjectured
to be harder than the corresponding factoring problem over
regular prime fields and thus the key sizes for ECC are
smaller than those required for the RSA algorithm for the
same targeted level of security.
The AMF accelerator provides several functions to support

each of prime field and binary field ECC. These include
point multiplication, which operates on ordered pairs
representing points on the elliptic curve, as well modular
multiplication, modular reduction and modular inverse,
which operate on elements of the prime or binary field. The
point coordinates are integers belonging to the prime field,
or are polynomials with binary coefficients to represent
elements of the binary field. The corresponding modulus in
the first case is the prime number defining the field, while
in the second case is an irreducible polynomial of order
equal to the key size.

AMF microarchitecture
A block diagram of the AMF accelerator is shown in
Figure 3. The channel interfaces with the DMA controller to
move the initial parameters into the accelerator’s internal
registers and to return the results once the calculation is
complete. The interface to the DMA controller is 130 bits
wide and the internal dataflow within the AMF is 65 bits
wide. The choice of the non-power-of-two 65-bit width was
to reduce the processing time. Modular math requires two
extra bits to handle overflow and a sign. Since the RSA keys
have sizes of order 2n, using a standard order of 2n dataflow

would have resulted in an additional multiplication per loop
and an extra loop per multiplication. In addition to moving
data, the channel decodes each command to determine the
parameter set and to route the parameters to the correct
registers. This includes the preload of any registers with
constants needed for the given operation. While transporting
the parameters, the channel will perform basic checks on a
parameter to determine if it is odd, zero, or negative and
of the correct size. A parameter that fails a check will cause
an abort of the operation with the appropriate return code sent
back to the DMA controller.
The register bank (regs in the figure) consists of eleven

64 � 73 bit arrays. These arrays hold the initial parameters,
the intermediate data and the results of the AMF operations.
To accommodate the 4K-bit parameters of RSA
operations, the arrays are defined as eleven 4160-bit registers.
For the smaller-sized ECC operations, which require more
registers, the arrays are split into a high and low half for
a total of 22 (2080-bit) registers. There are two 65-bit write
buses into the register bank and each can write all the
registers at the same time. There are four 65-bit read buses
from the registers with each bus having access to only a
subset of the registers. Register entries are protected with
single bit error correction or double bit error detection codes.
The red unit in Figure 3 contains the computational

dataflow to perform addition, subtraction, and shifting. There
are two, parallel, 3-cycle, 65-bit paths through this unit. The
two paths allow for the modulus to be shifted at the same
time that an add or subtract is occurring on the two operands.
The main data path has a pre-adder shift, an adder, and a
post-adder shift. The second path of the dataflow has an
adder and a post-adder shifter. These shifters in the path of
the adders enable compound functions like doubling of the
modulus before using it as an operand for parameter
checking, or for halving after a subtraction as needed by
multiplicative inverse calculations. The dataflow of this
unit uses all four read ports and both write ports to the
register bank.
The mg unit contains the computational dataflow to

perform the multiplication type operations of the AMF
accelerator. This unit consists of two, parallel, 4-cycle, 65-bit
pipelined multipliers. One multiplier is for the two operands,
the second is for the multiplication of the modulus.
Following the multipliers are three stages of multiplexers
(muxes) and adders such that all of the intermediate values
and carries in a single pass of multiplication stay within this
dataflow, and only the final output of the pass is stored
back to the register bank. This dataflow uses all of the
read buses from the register bank, but only uses one of the
write buses.
The cntl unit consists of 11 state machines that orchestrate

the access of the register bank and the control of the
dataflows. Some state machines call other state machines that
are building blocks of higher-level functions. This can result
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Figure 3

AMF accelerator dataflow and control elements.
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in several state machines being active at a time. For example,
the point multiply state machine calls the point double,
which calls the multiplication, which calls the modular
reduction. The AMF accelerator supports commands for
higher level functions, like modular exponentiation and point
multiply, as well as for lower level functions, like
Montgomery multiply, modular addition, and modular
reduction, that can be used as building blocks for more
complex computations.
As an example of the data and control flows in the AMF

accelerator, consider the modular exponentiation function.
A naive implementation of computing

R ¼ AB mod N

would multiply A with itself, reduce modulo N , then multiply
that result by A and reduce modulo N repeatedly. There
are a number of optimizations that can be applied to
this computation. One is the use of the Montgomery
multiplication (mgmult) operation [13] that allows most of
the time consuming modular reduction operations to be
omitted. Another is that instead of multiplying by A on each
step, the partial result can be squared and then multiplied
by A according to the value of the exponent. This reduces
the number of multiplications needed from B to roughly
1.5 log B.
The modular exponentiation operation proceeds as

follows. The registers are initialized with the values of
the three operands, A (in r2), B (in r6), and N (in r10).
A and N are first routed to the red unit and compared using
the subtraction operation to check that A G N , as required
by the implementation. Next, the Montgomery representation
of A is computed as

A0 ¼ A� 2L mod N ;

where L is the bit length of the operands and k (see below)
is the word size supported by the implementation, in this
case, 65 bits. This is accomplished by a sequence of steps in
which the Montgomery representation of 2L is computed.
This involves a call to the modular reduction operation
implemented in the red unit to reduce the constant
2ðLþkÞ mod N (from r10), and put the result in r4. Then a
series of squaring of this value using mgmult implemented in
the mg unit is applied to r4 with the result returned to r4
with a final mgmult of this result with 2k. That result is then
(mg) multiplied with A (still in r2) to get A0, which is stored
in both r2 and r4. Now the squaring and multiplications
needed to raise A0 to the power B commence, using another
sequence of mgmult operations applied to the partial result
in r4, and using the original value of A0 in r2. The result
of the exponentiation is converted back from Montgomery
representation by a final mgmult with the value 1. This final
result is written to r2, from where it is transferred to the DMA
controller, which writes it to the bus fabric as output data.

Memory compression/decompression
accelerator for AME
The AME technology uses the EFT engines to compress
pages and to decompress them on-demand. EFT consumes
or produces uncompressed data at a fixed rate of 8 bytes per
cycle. At the 2.3 GHz fabric clock frequency, this results
in a peak throughput of 37 GBps using two engines.
EFT engines occupy a fraction of a percent of the POWER7+
chip area.
Lossless data compression research and utilities such as

gzip and bzip2 focus mostly on efficient compression of large
files to minimize storage capacity or channel utilization.
Compressed memory systems, on the other hand, must
provide short latency, use small blocks, use minimal silicon
area, and perform an equal number of compress and
decompress operations. Processors access memory much
more frequently than storage and in small cache line size
units. Compressed block sizes are usually chosen to be small
to reduce average memory latency but at the expense of
reduced compression efficiency. EFT is primarily used for
compressing 4 KB pages, the OS’s unit of memory
management. To increase the system’s effective memory
capacity, a page of data should reside either in the
compressed or the uncompressed regions of memory but not
both. This results in an equal number of compress and
decompress operations, unlike storage systems where
decompression (read) operations are more frequent. The EFT
design addresses the issues described above.
EFT is based on the 842 compression algorithm [14]

related to the Lempel-Ziv (LZ) algorithms [15]. Compression
is achieved by replacing 8-, 4-, or 2-byte phrases with
pointers to the phrase copies recalled from a sliding window
of input history as shown in Figure 4. Input is processed
8 bytes per cycle. Each 8-byte chunk is partitioned into seven
sub-phrases, one 8 bytes, two 4 bytes, and four 2 bytes wide.
Each size phrase uses a separate dynamic dictionary built
from SRAM-based hash tables and FIFO buffers. Seven
sub-phrases are searched in parallel in their respective
dictionaries for pointers to their earlier copies in the sliding
window. Each 8-byte chunk is then encoded with a 5-bit
prefix called a Btemplate[ that describes the composition of
the pointers and literals following it. Literals (LL) are 2-byte
raw phrases from the current input chunk. Pointers point
to 8-, 4-, and 2-byte phrases in the sliding window. For
example, the four-bit template called P8 is followed by
an 8-bit pointer to an 8-byte phrase in the dictionary,
resulting in a total of 13 bits for encoding 8 bytes of input.
In another example, the five-bit template P4_P2_LL is
followed by a pointer to a 4-byte phrase, a pointer to a 2-byte
phrase, and a 2-byte raw literal from the input. Considering
all the permutations of pointers and literals and including
the special templates, there are a total of 29 templates
encoding every possible 8-byte input chunk, therefore
requiring a 5-bit template. Z8 is a special template that
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encodes 8 bytes of zeros, commonly found in memory.
RPTðNÞ is a special template with a 6-bit argument N
used for run length encoding, which encodes the previous
8 bytes N times. For example, a 512-byte run of zeros is
encoded by the bit sequence BZ8, RPT(63),[ resulting in
5þ 5þ 6 ¼ 16 bits.
Decompression involves reading the packed 64 bits of data

from memory in each clock cycle, and decoding the 5-bit
template field followed by its literals and pointers. Pointers
de-reference the dictionaries to obtain 8-, 4-, and 2-byte
phrases. Those phrases and are then combined according to
the template to reconstitute the 8-byte output chunk. The
seven sub-phrases of the chunk are added to their respective
dictionaries as well.
The dictionaries are constructed with hash arrays and FIFO

arrays, using high-speed SRAM macros. Many existing
hardware LZ implementations use a content-addressable
memory (CAM) as a dictionary, but CAMs typically
have slower access time, low density, and high power
consumption compared with SRAMs. In EFT, each size
phrase has its own hash array and FIFO array as shown in
Figure 4. The hash array contains pointers to the FIFO.
The FIFO stores the input data to the next sequential location
as it is received. Each phrase runs through a hash function
to generate an address for the hash array. Each hash function

is a carefully selected set of XOR trees that sample various
bits of the phrase. The address is used to both read and write
the hash array. The read occurs first and returns a pointer
to the FIFO. The FIFO address where the input phrase will be
stored is written into the hash array. If the same phrase shows
up later it can access the same hash array location which
returns a pointer to an earlier phrase copy in the FIFO. The
input phrase and the phrase read from the FIFO are then
compared for a match. If it is a match, the input phrase
may be encoded in the output stream with a pointer.
The hash array is analogous to a direct-mapped cache,

however, the hash array entries are replaced regardless of the
match or mismatch status. The hash array can be expected to
find fewer phrase matches than a CAM because of hash
collisions and the fact that only a single phrase match is
possible due to the direct-mapped-like organization. Sparse
hash arrays are employed with about four times as many
available entries as the number of used hash entries to reduce
the probability of multiple phrases hashing to the same
location. Set-associative hash arrays could provide higher
hash hit rate and multiple phrase matches. However, these
were judged to not improve compression ratio sufficiently to
warrant the cost.
Processing of the seven sub-phrases requires 7-ported hash

and FIFO arrays, which are implemented by employing

Figure 4

The 842 compression algorithm concept.
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banked hash arrays and replicated FIFO arrays containing
identical data. This approach gave an opportunity to optimize
the compression encoder separately for each size phrase.
Three different sliding windows for 8-, 4-, and 2-byte phrases
are used, unlike in conventional LZ algorithms.
The 8-byte phrase uses a 1K � 8-bit hash array with one

read port and one write port (1R1W). The 8-bit pointers
allow a data FIFO size of 256 by 8 bytes. Data read from
the FIFO is compared with the 8-byte phrase from the
input. The input phrase is written into the FIFO location
referenced by the next address counter. Once the FIFO is
full, the counter rolls over and an earlier data is overwritten.
This creates a 2K byte sliding window for the 8-byte phrases.
The 4-byte phrases share a 2K � 8-bit hash array with

2R2W ports. The 8-bit pointer values read from the
hash array allows a FIFO size of 256 by 8 bytes, which stores
512 phrases of 4 bytes each, with two phrases per FIFO entry.
A 9-bit pointer is needed to dereference one of 512 phrases.
The low-order bit determines which half of the FIFO entry
is used during encoding. If the input matches the high (low)
4 bytes of the FIFO, the low order bit is set to 0 (1). The FIFO
operates as a 2K byte sliding window for the 4-byte phrases.
The 2-byte phrases share a 1K � 6 bit hash array. Ideally,

this would use four read and write ports each, but SRAMs
with four ports were not available. Therefore, the hash array
is constructed using eight banks of 128 � 6-bit SRAMs
with 2R2W ports. The high order three bits of the hash
address select one of eight banks. If more than two hashes
happen to address the same bank, the collision detection logic
prevents all but two write accesses to the bank. The collision
priority is fixed with the high order 2-byte phrase having
the highest priority. During a collision, read data will be
returned to the priority losers but from another phrase’s
access. In sum, write collisions are dropped and read
collisions are returned with data from a wrong address. This
does not result in a correctness problem as the hash array
stored pointers are merely hints to where the phrases may be
found in the FIFO. Only after the input phrase compares
identical to the FIFO phrase, it is encoded with a pointer.
The 6-bit pointer stored in the hash array allows a 2-byte

phrase FIFO size of 64 by 8 bytes with one write port and
four read ports. The four read ports are implemented by
duplicating arrays with two read ports each. The 64 by 8-byte
SRAM allows for 256 phrases of 2 byte each. Therefore,
8-bit pointers are used for encoding 2 byte phrases. The two
low order pointer bits are determined after the input data is
compared to each 2-byte portion of the 8-byte FIFO data.
If the 2-byte input matches the high 2 bytes of the FIFO,
the low order pointer bits are B00.[ A match with the low
2 bytes of the FIFO gives low order pointer bits of B11.[
The FIFO operates as a 512-byte sliding window for the
two byte phrases.
Decompression does not require the use of the hash

arrays since pointers are already encoded in the compressed

input data. The FIFO arrays are used as dictionaries for
pointer references. The input stream is unpacked and
decoded based on the 5-bit template field. Literals and FIFO
data read using the pointers in the input stream are assembled
back into an 8 byte output chunk. This chunk is also
written back to each FIFO for future references. The
pipelined nature of the design may result in FIFO
read-after-write hazards, which are avoided by many levels
of write data bypassing to forward data to the read stage.
Figure 5 shows the pipeline stages of the EFT engine. The

compression and decompression pipelines are 64 bits wide,
18 and 16 stages deep, respectively. The pipelined data
flows at the maximum rate without stalls, provided the DMA
input/output buffers are not blocked. Pipeline hazards are
avoided with bypass circuits forwarding data between stages,
and by a compression-specific arbitration scheme to avoid
port conflicts in arrays.
DMA Channel Input contains the bus protocol state

machine and input buffers for both compression and
decompression. The compression flow starts with
Compression Hash Function for the XOR of phrase bits as
described earlier. The function outputs are addresses of the
8-, 4-, and 2-byte Hash Arrays. Hash Table Control controls
accesses to the Hash Arrays. Address decoding for bank
selection and collision detection is performed here. Data read
from the arrays are collected and then output as pointers.
Counters generate pointers that are written into the hash
arrays.
FIFO Input Control controls accesses to the FIFO

Array. Pointers from hashing are used to read the FIFOs.
Counters generate FIFO write addresses for input data.
Error correction code generation on write data is done in
this stage. Read and write addresses are decoded for bank
selection. Staged input data and pointers are outputs from this
stage. FIFO Output Control does error correction code
checking and correction on read data. The read data is output
from this stage.
Compression Data Compare compares phrases from input

data with FIFO read data. Compression Output Encode uses
comparison results to determine the template and result
format. Pointers and literals are combined to create
compressed data and a length field. Repeating input data
is detected for special templates. The output is the template
and result.
The Output Data Packing block takes the variable length

template and result, up to 69 bits in length, and packs it into
a 196 bit buffer. When 16 bytes of data are available, it is
sent to the DMA Channel Output. This contains output
buffers and the bus protocol state machines. This block also
has the capability to stall the pipeline when the buffers are
almost full.
The decompression flow starts with Compressed Data

Unpack accepting 64-bit wide data from DMA Channel
Input. The template field is used to determine the length of
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the packed data. Using this length the buffers are shifted to
pull out the variable length data. The output is a block of
compressed data, including the template, which is a maximum
of 69 bits long. The repeat function is handled here by sending
the RPTðNÞ result N times to the next stage. Compressed
Data Decode decodes the template and extracts the pointers
and literals, which will go to the FIFO arrays.
FIFO Input Control uses pointers from data decode to read

the FIFO Array. FIFO Output Control does error correction
code checking and correction on read data. The read data
goes to FIFO Bypass Control. Since FIFO writes happen
many cycles later than reads, write bypass is required
for decompression. The bypassed data and literals are
assembled into decompressed data. This data is an output
that also feeds back to FIFO Input Control for writing into
the FIFO. A counter indicates the location to be written.
ECC is generated on the write data.
The Output Data Packing block takes the decompressed

data and packs it into a 196-bit buffer. When 16 bytes of data
are available, it is sent to the DMA Channel Output. This
contains output buffers and the bus protocol state machines.
This block also has the capability to stall the pipeline when
the buffers are almost full.

Performance
Accelerator performance was measured on test hardware
using synthesized benchmarks with the objectives of

finding maximum throughput of the accelerator complex
and verifying there are no performance-limiting hardware
issues. Several system factors affect accelerator complex
performance and must be considered in the performance
measurement process. As mentioned earlier, the hypervisor
initiates an accelerator operation by executing an
invoke coprocessor instruction on a core, and the
hypervisor may then either poll the completion bit or receive
an interrupt indicating completion. Because most operation
types complete relatively quickly, and because of the
overhead of an interrupt and task switch, polling is used for
all operations except AMF operations. Also mentioned above
is the fact that the accelerator complex has multiple engines
and has the ability to queue operations. To measure the
maximum throughput of the accelerator, therefore requires
multiple outstanding operations. Performance measurements
indicate that the complement of engine instances and queuing
capabilities of the accelerator complex requires up to
12 operations to be in flight to saturate the implementation.
This provides sufficient throughput with margin to meet
the acceleration demand from the up to 32 threads on a
POWER7+ chip.
The measured performance of the cryptographic and hash

elements of the accelerator complex is shown in Table 2.
Overall, the cryptographic accelerators met the performance
objectives set at the outset of the project. Table 2(a) shows
the throughput of AES operations for two common block

Figure 5

EFT pipeline dataflow.
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sizes and two different key sizes at a 2.3 GHz clock
frequency. The maximum packet size of most Ethernet
networks is 1504 bytes, and 4096 bytes is a commonly used
page size. As the results show, the throughput is the same
for both block sizes and approaches the peak performance
expected for the operation. While 128-bit keys are common,
there is movement toward larger keys. The results show only
a modest decrease in throughput with the 256-bit key
compared with the 128-bit key, which is as expected given
the additional rounds per block necessitated by the larger
key. The throughput of decryption is the same as that of
encryption.
Table 2(b) shows the throughput of SHA hash operations.

Again, results are shown for two block sizes and two digest
sizes. Large-block throughput approaches peak engine
throughput. For small block sizes, throughput is less than
peak. These operations complete so quickly that it is not
possible to queue enough operations to overlap all parts of
the operations. With the larger block, the operation takes
longer to complete, enabling more overlap. Although
throughput is lower with the small block than with the large
block, it is higher for both with the 512-bit digest than
with the 256-bit digest. Although the 512-bit digest requires
more rounds per block, the word width is double that of
the 256-bit digest case, enabling higher throughput for
the former.
Table 2(c) shows the rate at which AMF modular

exponentiation operations can be executed for two different
key sizes. Again encrypt and decrypt performance is the
same. These operations do not encrypt and decrypt large
amounts of data and are very long running operations,
so throughput in terms of gigabytes per second is not
appropriate. Because the operations run for such a long time,
overheads essentially vanish, and measured operations per
second closely approach peak performance of the engine.

Although a 1024-bit key is common today, there is
movement toward 2048-bit keys, with broader deployment in
the future. The larger key requires more operations per bit,
so throughput is reduced as expected.
The throughput of the EFT engines was also measured

using 4096-byte blocks that were filled with data that had
a compression ratio of 2.2, which is considered a typical
compression ratio. For compression, a total bandwidth of
21.6 GBps was achieved. For decompression, a total
bandwidth of 25.8 GBps was achieved. This is lower than the
peak bandwidth of two engines of 37 GBps but matched
expectations, given overheads and memory bandwidth
limitations. A larger bandwidth was measured with larger
blocks, but most usage of these engines is with 4096-byte
pages. Measurements were also made with pages filled with
zeros, which are common in some workloads. As expected,
a lower bandwidth was measured because the amount of
compressed data is very small. However, a higher operations
per second rate was achieved.

Conclusion
This paper described the new hardware acceleration
technologies included in the POWER7+ processor. The
on-chip accelerator complex consists of acceleration engines
as well as data movement and control hardware. The
accelerator complex is attached to the processor SMP
interconnect fabric, enabling access to data in the cache and
memory subsystem at high bandwidth. The accelerators
consist of engines that perform symmetric and asymmetric
cryptographic functions, hashing, true random number
generation, and memory compression and decompression.
These are important operations in contemporary POWER
system workloads. Movement of data between the bus fabric
and the engines is accomplished by a BIU and DMA
controller. These are endowed with read and write machine
and buffer resources, as well as prefetch and overlap
capabilities that allow memory access and job initiation
latencies to be often hidden, thereby maximizing throughput.
The algorithms and key sizes selected for acceleration in
the cryptographic and hashing engines as well as the
performance provided by all the engines, DMA controller,
and BIU ensure their utility in the POWER7+ processor
lifetime and in the years to come. Indeed, future POWER
systems will see a broadening scope for acceleration
technologies of various forms and functions, providing
further CPU off-load and performance gains on algorithms
suited to hardware acceleration.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries, or
both.
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works. Spending most of his years in Rochester, he has done
architecture and performance analysis for AS/400 and RS/6000 (now
called POWER systems) products. This included such topics as
NUMA, VLIW, caches, MP cache coherency, multithreading, MP
interconnects, chip multiprocessors, and converting AS/400 to
PowerPC architecture processors. Currently, he is a Senior Technical
Staff Member and performance lead for POWER7+ and continues to do
architecture and performance analysis for POWER systems servers.

Ken Lauricella IBM Systems and Technology Group, Essex
Junction, VT 05452 USA (cella@us.ibm.com). Mr. Lauricella joined
IBM in Kingston, New York, after earning a B.S.E.E. degree from
Cornell University in 1979. He is a Senior Engineer in the POWER
development team of the Systems and Technology Group. He has
held a variety of design positions in processor and ASIC development.
In the past few years, he has focused on the design and implementation
of hardware accelerators.

Ross Leavens IBM Systems and Technology Group, Research
Triangle Park, NC 27709 USA (rossl@us.ibm.com). Mr. Leavens has a
B.S. degree in electrical and computer engineering from The Ohio State
University (1987) and an M.S. degree in electrical engineering from
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North Carolina State University (1989). He is a Senior Engineer in
the POWER development team of the System Technology group.
In 1989, he joined the IBM Networking Hardware Division in Research
Triangle Park, North Carolina. He was a logic designer on several
token-ring MAC and network processor chips. In 2003, he joined
the Systems and Technology Group and has worked on several
POWER processors in areas of I/O subsystem and cryptography
acceleration. He has ten issued patents in network processor
and microprocessor design.

John J. Reilly IBM Systems and Technology Group, Essex
Junction, VT 05452 USA (johnre@us.ibm.com). Mr. Reilly earned a
B.S. degree in electrical engineering from Pennsylvania State
University. He is an Advisory Engineer in the IBM Systems and
Technology Group. He has worked on design and verification of
processors, including PowerPC 970, POWER7, POWER7+, and future
POWER processors. Currently his focus is on hardware accelerators for
compression and cryptography.

Peter A. Sandon IBM Systems and Technology Group, Essex
Junction, VT 05452 USA (sandon@us.ibm.com). Dr. Sandon is a
Senior Technical Staff Member in the Power Technology Development
organization. He received a B.S. degree in electrical engineering
from Cornell University, an M.S. degree in electrical engineering from
the University of California at Berkeley, and a Ph.D. degree in
computer science from the University of Wisconsin. He joined IBM
in the Data Systems Division, Poughkeepsie, New York, to work on
logic design and verification of the IBM 3081 mainframe. More
recently, he has contributed to the design of a number of PowerPC
and POWER processors in areas including architecture, performance,
and formal verification. His current interests are in computer
architecture and computer security.
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